1 The second and fifth terms of an arithmetic series are 40 and 121 respectively.
 a Find the first term and common difference of the series. (4)
 b Find the sum of the first 25 terms of the series. (2)

2 A sequence is defined by the recurrence relation
 \[u_r = u_{r-1} + 4, \quad r > 1, \quad u_1 = 3. \]
 a Write down the first five terms of the sequence. (1)
 b Evaluate \(\sum_{r=1}^{20} u_r. \) (3)

3 The first three terms of an arithmetic series are \(t, (2t - 5) \) and 8.6 respectively.
 a Find the value of the constant \(t. \) (2)
 b Find the 16th term of the series. (4)
 c Find the sum of the first 20 terms of the series. (2)

4 a State the formula for the sum of the first \(n \) natural numbers. (1)
 b Find the sum of the natural numbers from 200 to 400 inclusive. (3)
 c Find the value of \(N \) for which the sum of the first \(N \) natural numbers is 4950. (3)

5 A sequence of terms \(\{u_n\} \) is defined, for \(n \geq 1 \), by the recurrence relation
 \[u_{n+1} = k + u_n^2, \]
 where \(k \) is a non-zero constant. Given that \(u_1 = 1, \)
 a find expressions for \(u_2 \) and \(u_3 \) in terms of \(k. \) (3)
 Given also that \(u_3 = 1, \)
 b find the value of \(k, \) (3)
 c state the value of \(u_{25} \) and give a reason for your answer. (2)

6 a Find the sum of the integers between 1 and 500 that are divisible by 3. (3)
 b Evaluate \(\sum_{r=3}^{20} (5r - 1). \) (3)

7 a Prove that the sum, \(S_n, \) of the first \(n \) terms of an arithmetic series with first term \(a \) and common difference \(d \) is given by
 \[S_n = \frac{1}{2} n[2a + (n - 1)d]. \] (4)
 b An arithmetic series has first term \(-1\) and common difference 6.
 Verify by calculation that the largest value of \(n \) for which the sum of the first \(n \) terms of the series is less than 2000 is 26. (3)

8 A sequence is defined by the recurrence relation
 \[t_{n+1} = 4 - kt_n, \quad n > 0, \quad t_1 = -2, \]
 where \(k \) is a positive constant.
 Given that \(t_3 = 3, \) show that \(k = -1 + \frac{1}{2} \sqrt{6}. \) (6)
9 An arithmetic series has first term 6 and common difference 3.
 a Find the 20th term of the series. \(\text{(2)} \)
 Given that the sum of the first \(n \) terms of the series is 270,
 b find the value of \(n \). \(\text{(4)} \)

10 A sequence of terms \(t_1, t_2, t_3, \ldots \) is such that the sum of the first 30 terms is 570.
 Find the sum of the first 30 terms of the sequences defined by
 a \(u_n = 3t_n, \ n \geq 1 \), \(\text{(2)} \)
 b \(v_n = t_n + 2, \ n \geq 1 \), \(\text{(2)} \)
 c \(w_n = t_n + n, \ n \geq 1 \). \(\text{(3)} \)

11 Tom's parents decide to pay him an allowance each month beginning on his 12\(^{th}\) birthday.
 The allowance is to be £40 for each of the first three months, £42 for each of the next three
 months and so on, increasing by £2 per month after each three month period.
 a Find the total amount that Tom will receive in allowances before his 14\(^{th}\) birthday. \(\text{(4)} \)
 b Show that the total amount, in pounds, that Tom will receive in allowances in the \(n \) years
 after his 12\(^{th}\) birthday, where \(n \) is a positive integer, is given by \(12n(4n + 39) \). \(\text{(4)} \)

12 A sequence is defined by
 \[u_{n+1} = u_n - 3, \ n \geq 1, \ u_1 = 80. \]
 Find the sum of the first 45 terms of this sequence. \(\text{(3)} \)

13 The third and eighth terms of an arithmetic series are 298 and 263 respectively.
 a Find the common difference of the series. \(\text{(3)} \)
 b Find the number of positive terms in the series. \(\text{(4)} \)
 c Find the maximum value of \(S_n \), the sum of the first \(n \) terms of the series. \(\text{(3)} \)

14 a Find and simplify an expression in terms of \(n \) for \(\sum_{r=1}^{n} (6r + 4) \). \(\text{(3)} \)
 b Hence, show that
 \[\sum_{r=n+1}^{2n} (6r + 4) = n(9n + 7). \] \(\text{(4)} \)

15 The \(n \)th term of a sequence, \(u_n \), is given by
 \[u_n = k^n - n. \]
 Given that \(u_2 + u_4 = 6 \) and that \(k \) is a positive constant,
 a show that \(k = \sqrt[3]{3} \), \(\text{(5)} \)
 b show that \(u_3 = 3u_1 \). \(\text{(3)} \)

16 The first three terms of an arithmetic series are \((k + 4), (4k - 2) \) and \((k^2 - 2) \) respectively,
 where \(k \) is a constant.
 a Show that \(k^2 - 7k + 6 = 0 \). \(\text{(2)} \)
 Given also that the common difference of the series is positive,
 b find the 15th term of the series. \(\text{(4)} \)